Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 810
Filtrar
1.
Cell Physiol Biochem ; 58(1): 63-82, 2024 Feb 19.
Artigo em Inglês | MEDLINE | ID: mdl-38374715

RESUMO

BACKGROUND/AIMS: Endothelial cells (ECs) play a crucial role in various physiological processes, particularly those related to the cardiovascular system, but also those affecting the entire organism. The biology of ECs is regulated by multiple biochemical stimuli and epigenetic drivers that govern gene expression. We investigated the angiogenic potential of ECs from a protein citrullination perspective, regulated by peptidyl-arginine deiminases (PADs) that modify histone and non-histone proteins. Although the involvement of PADs has been demonstrated in several physiological processes, inflammation-related disorders and cancer, their role in angiogenesis remains unclear. METHODS: To elucidate the role of PADs in endothelial angiogenesis, we used two human EC models: primary vein (HUVECs) and microvascular endothelial cells (HMEC-1). PADs activity was inhibited using irreversible inhibitors: BB-Cl-amidine, Cl-amidine and F-amidine. We analyzed all three steps of angiogenesis in vitro : proliferation, migration, and capillary-like tube formation, as well as secretory activities, gene expression and signaling in ECs. RESULTS: All used PAD inhibitors reduced the histone H3 citrullination (H3cit) mark, inhibited endothelial cell migration and capillary-like tube formation, and favored an angiostatic activity in HMEC-1 cells, by increasing PEDF (pigment epithelium-derived factor) and reducing VEGF (vascular endothelial growth factor) mRNA expression and protein secretion. Additionally, BB-Cl-amidine reduced the total activity of MMPs (Matrix metalloproteinases). The observed effects were underlined by the inhibition of Akt phosphorylation.>. CONCLUSION: Our findings suggest that pharmacological inhibitors of citrullination are promising therapeutic agents to target angiogenesis.


Assuntos
Células Endoteliais , Desiminases de Arginina em Proteínas , Proteínas Proto-Oncogênicas c-akt , Humanos , Células Endoteliais/metabolismo , Histonas/metabolismo , Desiminases de Arginina em Proteínas/antagonistas & inibidores , Proteínas Proto-Oncogênicas c-akt/metabolismo , Transdução de Sinais , Fator A de Crescimento do Endotélio Vascular/genética , Fator A de Crescimento do Endotélio Vascular/metabolismo , Amidinas/química , Amidinas/farmacologia , Inibidores da Angiogênese/química , Inibidores da Angiogênese/farmacologia
2.
ChemMedChem ; 18(18): e202300261, 2023 09 15.
Artigo em Inglês | MEDLINE | ID: mdl-37376962

RESUMO

Novel benzo[b]thienyl- and 2,2'-bithienyl-derived benzothiazoles and benzimidazoles were synthesized to study their antiproliferative and antitrypanosomal activities in vitro. Specifically, we assessed the impact that amidine group substitutions and the type of thiophene backbone have on biological activity. In general, the benzothiazole derivatives were more active than their benzimidazole analogs as both antiproliferative and antitrypanosomal agents. The 2,2'-bithienyl-substituted benzothiazoles with unsubstituted and 2-imidazolinyl amidine showed the most potent antitrypanosomal activity, and the greatest selectivity was observed for the benzimidazole derivatives bearing isopropyl, unsubstituted and 2-imidazolinyl amidine. The 2,2'-bithiophene derivatives showed most selective antiproliferative activity. Whereas the all 2,2'-bithienyl-substituted benzothiazoles were selectively active against lung carcinoma, the benzimidazoles were selective against cervical carcinoma cells. The compounds with an unsubstituted amidine group also produced strong antiproliferative effects. The more pronounced antiproliferative activity of the benzothiazole derivatives was attributed to different cytotoxicity mechanisms. Cell cycle analysis, and DNA binding experiments provide evidence that the benzimidazoles target DNA, whereas the benzothiazoles have a different cellular target because they are localized in the cytoplasm and do not interact with DNA.


Assuntos
Antineoplásicos , Carcinoma , Humanos , Antineoplásicos/química , Linhagem Celular Tumoral , Benzotiazóis/química , DNA/metabolismo , Benzimidazóis/química , Amidinas/farmacologia , Amidinas/química , Relação Estrutura-Atividade , Proliferação de Células
3.
J Am Chem Soc ; 144(49): 22397-22402, 2022 12 14.
Artigo em Inglês | MEDLINE | ID: mdl-36469014

RESUMO

Amidines are a structural surrogate for peptide bonds, yet have received considerably little attention in peptides due to limitations in existing methods to access them. The synthetic strategy developed in this study represents the first robust and general procedure for the introduction of amidines into the peptide backbone. We exploit and further develop the utility and efficiency of thioimidate protecting groups as a means to side-step reactivity that ultimately renders existing methods unsuitable for the installation of amidines along the main-chain of peptides. This work is significant because it describes a generally applicable path to access unexplored peptide designs and architectures for new therapeutics made possible by the unique properties of amidines.


Assuntos
Amidinas , Peptídeos , Amidinas/química , Peptídeos/química
4.
J Am Chem Soc ; 144(45): 20672-20679, 2022 11 16.
Artigo em Inglês | MEDLINE | ID: mdl-36318611

RESUMO

Amidines are a ubiquitous class of bioactive compounds found in a wide variety of natural products; thus, efficient strategies for their preparation are in great demand. Specifically, their common structural core decorated with three substituents sets amidines as perfect candidates for multicomponent synthesis. Herein, we present a highly modular metal-free multicomponent strategy for the synthesis of sulfonyl amidines. This work was focused on selecting readily accessible reagents to facilitate the in situ formation of enamines by the addition of amines to ketones. These components were coupled with azides to provide a broad reaction scope with respect to all three coupling partners. Aromatic and aliphatic amines and ketones were tolerated under our reaction conditions. Likewise, the presence of a methyl group on the ketone was critical to reactivity, which was leveraged for the design of a highly regioselective reaction with aliphatic ketones. A biologically active compound was successfully synthesized in one step, demonstrating the practical utility of our methodology. Finally, the postulated mechanism was investigated and supported both experimentally and by means of a multivariate statistical model.


Assuntos
Amidinas , Azidas , Azidas/química , Amidinas/química , Aminas/química , Cetonas/química , Cobre/química , Metais , Metadona
5.
Molecules ; 27(20)2022 Oct 14.
Artigo em Inglês | MEDLINE | ID: mdl-36296503

RESUMO

Allyl halides with triflamide under oxidative conditions form halogen-substituted amidines. Allyl cyanide reacts with triflamide in acetonitrile or THF solutions in the presence of NBS to give the products of bromotriflamidation with a solvent interception, whereas in CH2Cl2 two regioisomers of the bromotriflamidation product without a solvent interception were obtained. The formed products undergo base-induced dehydrobromination to give linear isomers with the new C=C bond conjugated either with the nitrile group or the amidine moiety or alkoxy group. Under the same conditions, the reaction of allyl alcohol with triflamide gives rise to amidine, which was prepared earlier by the reaction of diallyl formal with triflamide. Unlike their iodo-substituted analogs, bromo-substituted amidines successfully transform into imidazolidines under the action of potassium carbonate.


Assuntos
Amidinas , Imidazolidinas , Amidinas/química , Solventes/química , Nitrilas , Acetonitrilas , Halogênios
6.
Bioorg Chem ; 124: 105815, 2022 07.
Artigo em Inglês | MEDLINE | ID: mdl-35512419

RESUMO

The novel biocatalytic method for the synthesis of pharmaceutically relevant N-unsubstituted amidines was presented. The application of whole cells from commonly available vegetables allowed for the chemoselective reduction of the amidoxime moiety in the presence of other substituents prone to reduction or dehalogenation e.g. carbon-carbon double bond. Under optimized conditions several amidines were obtained with high yield up to 97% in aqueous medium at ambient temperature and atmospheric pressure. The practical potential of the newly developed method was shown in the preparative synthesis of anti-parasitic drug, phenamidine. Moreover, for the first time the enantioselective bioreduction of chiral racemic amidoximes to the corresponding amidines has been shown. The developed sustainable biocatalytic protocol fulfils the green chemistry rules and no application of metal catalysts meets the strict requirements of the pharmaceutical industry regarding metal contamination.


Assuntos
Oxirredutases , Saccharomyces cerevisiae , Amidinas/química , Biocatálise , Carbono , Oxirredutases/metabolismo , Oximas , Raízes de Plantas/metabolismo , Saccharomyces cerevisiae/metabolismo , Estereoisomerismo
7.
Carbohydr Res ; 513: 108520, 2022 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-35192999

RESUMO

The goal of this study was the design and synthesis of bulky and polar-bulky galactonoamidines that have a potential to interact with both catalytic amino acids in the active site of human α-galactosidase. While a library of more than 25 compounds was previously synthesized following established protocols, the coupling of the selected amines with activated perbenzylated galactothionolactam yielded only small amounts for some of the perbenzylated targets. A computational approach disclosed relative energy differences of selected adducts and suggested a solvent change that then allowed a successful synthesis of the precursor compounds in 20-75%. Subsequent attempts to globally deprotect perbenzylated galactonoamidines by Pd catalyzed hydrogenation resulted in unwanted Pd coordination, incomplete debenzylation reactions, partial compound hydrolysis, and even complete decomposition. A lengthy protocol was elaborated to purify the targeted carbohydrate derivatives after modified debenzylation conditions.


Assuntos
Amidinas/metabolismo , alfa-Galactosidase/metabolismo , Amidinas/química , Aminoácidos/química , Aminoácidos/metabolismo , Biocatálise , Humanos , Estrutura Molecular , Solventes/química , Solventes/metabolismo , alfa-Galactosidase/química
8.
Chem Pharm Bull (Tokyo) ; 70(1): 85-88, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-34980739

RESUMO

The electrophilic amination of nitrogen-based nucleophiles, including strong organic bases, was conducted in an Et2O solvent using O-(mesitylenesulfonyl)hydroxylamine. Aliphatic tert-amines and N,N,N'-(trialkyl)amidines rapidly formed precipitates of the corresponding aminated salts in high yields. The amination of the highly basic and sterically hindered N,N,N',N',N″-(pentaalkyl)guanidines was achieved under modified conditions, although the yields were moderate because of a competing side reaction caused by the acid-base equilibrium.


Assuntos
Amidinas/síntese química , Aminas/síntese química , Éteres/química , Guanidinas/síntese química , Amidinas/química , Aminação , Aminas/química , Guanidinas/química , Estrutura Molecular , Sais/síntese química , Sais/química , Solventes/química
9.
Curr Med Chem ; 29(7): 1271-1292, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-34951354

RESUMO

Glycosidases, the enzymes responsible for the breakdown of glycoconjugates, including di-, oligo- and polysaccharides, are present across all kingdoms of life. The extreme chemical stability of the glycosidic bond combined with the catalytic rates achieved by glycosidases makes them among the most proficient of all enzymes. Given their multitude of roles in vivo, inhibition of these enzymes is highly attractive with potential in the treatment of a vast array of pathologies ranging from lysosomal storage and diabetes to viral infections. Therefore great efforts have been invested in the last three decades to design and synthesize inhibitors of glycosidases leading to a number of drugs currently on the market. Amongst the vast array of structures that have been disclosed, sugars incorporating an amidine moiety have been the focus of many research groups around the world because of their glycosidase transition state-like structure. In this review, we report and discuss the structure, the inhibition profile, and the use of these molecules, including related structural congeners as transition state analogs.


Assuntos
Amidinas , Glicosídeo Hidrolases , Amidinas/química , Amidinas/farmacologia , Carboidratos , Inibidores Enzimáticos/química , Inibidores Enzimáticos/farmacologia , Glicosídeo Hidrolases/antagonistas & inibidores , Humanos , Açúcares/química
10.
Eur J Med Chem ; 228: 114028, 2022 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-34920170

RESUMO

A common challenge for medicinal chemists is to reduce the pKa of strongly basic groups' conjugate acids into a range that preserves the desired effects, usually potency and/or solubility, but avoids undesired effects like high volume of distribution (Vd), limited membrane permeation, and off-target binding to, notably, the hERG channel and monoamine receptors. We faced this challenge with a 3,4,5,6-tetrahydropyridine-2-amine scaffold harboring an amidine, a key structural component of potential inhibitors of BACE1, the rate-limiting enzyme in the production of Aß species that make up amyloid plaques in Alzheimer's disease. In our endeavor to balance potency with desirable properties to achieve brain penetration, we introduced a diverse set of groups in beta position of the amidine that modulate logD, PSA and pKa. Given the synthetic challenge to prepare these highly functionalized warheads, we first developed a design flow including predicted physicochemical parameters which allowed us to select only the most promising candidates for synthesis. For this we evaluated a set of commercial packages to predict physicochemical properties, which can guide medicinal chemists in their endeavors to modulate pKa values of amidine and amine bases.


Assuntos
Secretases da Proteína Precursora do Amiloide/antagonistas & inibidores , Ácido Aspártico Endopeptidases/antagonistas & inibidores , Elétrons , Inibidores Enzimáticos/farmacologia , Pirrolidinas/farmacologia , Amidinas/química , Amidinas/farmacologia , Secretases da Proteína Precursora do Amiloide/metabolismo , Animais , Ácido Aspártico Endopeptidases/metabolismo , Físico-Química , Cães , Relação Dose-Resposta a Droga , Inibidores Enzimáticos/síntese química , Inibidores Enzimáticos/química , Humanos , Estrutura Molecular , Pirrolidinas/síntese química , Pirrolidinas/química , Relação Estrutura-Atividade
11.
Int J Mol Sci ; 22(24)2021 Dec 13.
Artigo em Inglês | MEDLINE | ID: mdl-34948186

RESUMO

In the present work, a convenient and straightforward approach to the preparation of borylated amidines based on the closo-dodecaborate anion [B12H11NCCH3NHR]-, R=H, Alk, Ar was developed. This method has two stages. A nitrile derivative of the general form [B12H11NCCH3]- was obtained, using a modified technique, in the first stage. On the second stage the resulting molecular system interacted with primary amines to form the target amidine products. This approach is characterised by a simple chemical apparatus, mild conditions and high yields of the final products. The mechanism of the addition of amine to the nitrile derivative of the closo-dodecaborate anion was studied, using quantum-chemical methods. The interaction between NH3 and [B12H11NCCH3]- ammonia was chosen as an example. It was found that the structure of the transition state determines the stereo-selectivity of the process. A study of the biological properties of borylated amidine sodium salts indicated that the substances had low toxicity and could accumulate in cancer cells in significant amounts.


Assuntos
Amidinas/síntese química , Terapia por Captura de Nêutron de Boro/métodos , Amidinas/química , Aminas , Ânions , Compostos de Boro/química , Desenho de Fármacos
12.
Molecules ; 26(22)2021 Nov 15.
Artigo em Inglês | MEDLINE | ID: mdl-34833979

RESUMO

The interaction of acetamidine and phenylamidine with peri-R-ethynyl-9,10-anthraquinones in refluxing n-butanol leads to the formation of cascade transformations products: addition/elimination/cyclization-2-R-7H-dibenzo[de,h]quinolin-7-ones and(or) 2-R-3-aroyl-7H-dibenzo[de,h]quinolin-7-ones. The anti-inflammatory and antitumor properties of the new 2-R-7H-dibenzo[de,h]quinolin-7-ones were investigated in vivo, in vitro, and in silico. The synthesized compounds exhibit high anti-inflammatory activity at dose 20 mg/kg (intraperitoneal injection) in the models of exudative (histamine-induced) and immunogenic (concanavalin A-induced) inflammation. Molecular docking data demonstrate that quinolinones can potentially intercalate into DNA similarly to the antitumor drug doxorubicin.


Assuntos
Amidinas/química , Antraquinonas/química , Anti-Inflamatórios/química , Antineoplásicos/química , Quinolinas/química , Alcaloides/síntese química , Alcaloides/química , Alcaloides/farmacologia , Amidinas/síntese química , Animais , Antraquinonas/síntese química , Anti-Inflamatórios/síntese química , Anti-Inflamatórios/farmacologia , Antineoplásicos/síntese química , Antineoplásicos/farmacologia , Linhagem Celular Tumoral , Técnicas de Química Sintética , Humanos , Masculino , Camundongos Endogâmicos C57BL , Simulação de Acoplamento Molecular , Quinolinas/síntese química , Quinolinas/farmacologia
13.
Bioorg Med Chem Lett ; 52: 128373, 2021 11 15.
Artigo em Inglês | MEDLINE | ID: mdl-34560264

RESUMO

Immunomodulating enzyme IDO1 plays an important role in tumor immune resistance. Inhibiting IDO1 by small molecules with new mechanism of action is a potential strategy in IDO1 inhibitor development. Based on our urea derived compound originally binding with holo-IDO1, through scaffold hopping, a series of diisobutylaminophenyl hydroxyamidine compounds were designed. Unexpectedly, this novel class of IDO1 inhibitor does not target the holo form of IDO1 protein but displaces heme and binds to its apo form. Representative compound I-4 exhibits moderate potency with IC50 value of 0.44 µM in cell-based IDO1 assay, which has the potential to be developed for IDO1-related cancer treatment.


Assuntos
Amidinas/farmacologia , Descoberta de Drogas , Inibidores Enzimáticos/farmacologia , Indolamina-Pirrol 2,3,-Dioxigenase/antagonistas & inibidores , Amidinas/síntese química , Amidinas/química , Relação Dose-Resposta a Droga , Inibidores Enzimáticos/síntese química , Inibidores Enzimáticos/química , Humanos , Indolamina-Pirrol 2,3,-Dioxigenase/metabolismo , Estrutura Molecular , Relação Estrutura-Atividade
14.
J Enzyme Inhib Med Chem ; 36(1): 1952-1967, 2021 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-34455887

RESUMO

A series of 6-amidinobenzothiazoles, linked via phenoxymethylene or directly to the 1,2,3-triazole ring with a p-substituted phenyl or benzyl moiety, were synthesised and evaluated in vitro against four human tumour cell lines and the protozoan parasite Trypanosoma brucei. The influence of the type of amidino substituent and phenoxymethylene linker on antiproliferative and antitrypanosomal activities was observed, showing that the imidazoline moiety had a major impact on both activities. Benzothiazole imidazoline 14a, which was directly connected to N-1-phenyl-1,2,3-triazole, had the most potent growth-inhibitory effect (IC50 = 0.25 µM) on colorectal adenocarcinoma (SW620), while benzothiazole imidazoline 11b, containing a phenoxymethylene linker, exhibited the best antitrypanosomal potency (IC90 = 0.12 µM). DNA binding assays showed a non-covalent interaction of 6-amidinobenzothiazole ligands, indicating both minor groove binding and intercalation modes of DNA interaction. Our findings encourage further development of novel structurally related 6-amidino-2-arylbenzothiazoles to obtain more selective anticancer and anti-HAT agents.


Assuntos
Antiprotozoários/síntese química , Benzotiazóis/síntese química , Substâncias Intercalantes/síntese química , Trypanosoma brucei brucei/efeitos dos fármacos , Amidinas/química , Antineoplásicos/síntese química , Antineoplásicos/farmacologia , Antiprotozoários/farmacologia , Benzotiazóis/farmacologia , Proliferação de Células/efeitos dos fármacos , Neoplasias Colorretais/tratamento farmacológico , DNA/química , Avaliação Pré-Clínica de Medicamentos , Humanos , Imidazolinas/química , Substâncias Intercalantes/farmacologia , Conformação de Ácido Nucleico , Relação Estrutura-Atividade , Triazóis/química
15.
ChemMedChem ; 16(22): 3396-3401, 2021 11 19.
Artigo em Inglês | MEDLINE | ID: mdl-34357687

RESUMO

A selective mono-N-arylation strategy of amidines under Chan-Lam conditions is described. During the reaction optimization phase, the isolation of a mononuclear Cu(II) complex provided unique mechanistic insight into the operation of Chan-Lam mono-N-arylation. The scope of the process is demonstrated, and then applied to access the first mono-N-arylated analogues of pentamidine. Sub-micromolar activity against kinetoplastid parasites was observed for several analogues with no cross-resistance in pentamidine and diminazene-resistant trypanosome strains and against Leishmania mexicana. A fluorescent mono-N-arylated pentamidine analogue revealed rapid cellular uptake, accumulating in parasite nuclei and the kinetoplasts. The DNA binding capability of the mono-N-arylated pentamidine series was confirmed by UV-melt measurements using AT-rich DNA. This work highlights the potential to use Chan-Lam mono-N-arylation to develop therapeutic leads against diamidine-resistant trypanosomiasis and leishmaniasis.


Assuntos
Amidinas/farmacologia , Antiparasitários/farmacologia , Desenvolvimento de Medicamentos , Leishmania mexicana/efeitos dos fármacos , Pentamidina/farmacologia , Amidinas/química , Antiparasitários/síntese química , Antiparasitários/química , Relação Dose-Resposta a Droga , Resistência a Medicamentos/efeitos dos fármacos , Estrutura Molecular , Testes de Sensibilidade Parasitária , Pentamidina/síntese química , Pentamidina/química , Relação Estrutura-Atividade
16.
Ultrason Sonochem ; 77: 105685, 2021 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-34364069

RESUMO

Protein oxidation leads to covalent modification of structure and deterioration of functional properties of quinoa protein. The objective of this study was to investigate the effects of ultrasonic treatment on the functional and physicochemical properties of quinoa protein oxidation aggregates. In this concern, 2,2'-azobis (2-amidinopropane) dihydrochloride (AAPH) was selected as oxidative modification of quinoa protein. The microstructure of quinoa protein displayed by scanning electron microscope (SEM) indicated that oxidation induced extensive aggregation, leading to carbonylation and degradation of sulfhydryl groups. Aggregation induced by oxidation had a negative effect on the solubility, turbidity, emulsifying stability. However, according to the analysis of physicochemical properties, ultrasonic significantly improved the water solubility of quinoa protein. The quinoa protein treated by ultrasonic for 30 min exhibited the best dispersion stability in water, which corresponded to the highest ζ-potential, smallest particle size and most uniform distribution. Based on the FT-IR, SDS-PAGE and surface hydrophobicity analysis, the increase of α-helix, ß-turn and surface hydrophobicity caused by cavitation effect appeared to be the main mechanism of quinoa protein solubilization. In addition, the hydrophobic region of the protein was re-buried by excessive ultrasonic treatment, and the protein molecules were reaggregated by disulfide bonds. Microstructural observations further confirmed that ultrasonic treatment effectively inhibited protein aggregation and improved the functional properties of quinoa protein.


Assuntos
Chenopodium quinoa/química , Proteínas de Plantas/química , Agregados Proteicos , Ondas Ultrassônicas , Amidinas/química , Qualidade dos Alimentos , Oxirredução
17.
Bioorg Med Chem ; 44: 116294, 2021 08 15.
Artigo em Inglês | MEDLINE | ID: mdl-34218000

RESUMO

In search of new Nitric Oxide Synthase (NOS) inhibitor agents, two isosteric series of derivatives with an imidamide scaffold (one of them with a hydroxyl group and the other with a carbonyl one) were synthesized and evaluated on inducible (iNOS) and neuronal (nNOS) isoforms. These compounds have been designed by combining a kynurenamine framework with an amidine moiety in order to improve selectivity for the inducible isoform. In general, the in vitro inhibitory assays exhibited better inhibition values on the iNOS isoform, being the N-(3-(2-amino-5-methoxyphenyl)-3-hydroxypropyl)-4-(trifluoromethyl)benzimidamide 4i the most active inhibitor with the highest iNOS selectivity, without inhibiting eNOS. Docking studies on the two most active compounds suggest a different binding mode on both isozymes, supporting the experimentally observed selectivity towards the inducible isoform. Physicochemical in silico studies suggest that these compounds possess good drug-likeness properties.


Assuntos
Amidinas/farmacologia , Inibidores Enzimáticos/farmacologia , Simulação de Acoplamento Molecular , Óxido Nítrico Sintase Tipo II/antagonistas & inibidores , Óxido Nítrico Sintase Tipo I/antagonistas & inibidores , Amidinas/síntese química , Amidinas/química , Relação Dose-Resposta a Droga , Inibidores Enzimáticos/síntese química , Inibidores Enzimáticos/química , Humanos , Estrutura Molecular , Óxido Nítrico Sintase Tipo I/metabolismo , Óxido Nítrico Sintase Tipo II/metabolismo , Relação Estrutura-Atividade
18.
ACS Chem Biol ; 16(8): 1365-1376, 2021 08 20.
Artigo em Inglês | MEDLINE | ID: mdl-34328300

RESUMO

G-quadruplex (G4) DNA structures are widespread in the human genome and are implicated in biologically important processes such as telomere maintenance, gene regulation, and DNA replication. Guanine-rich sequences with potential to form G4 structures are prevalent in the promoter regions of oncogenes, and G4 sites are now considered as attractive targets for anticancer therapies. However, there are very few reports of small "druglike" optical G4 reporters that are easily accessible through one-step synthesis and that are capable of discriminating between different G4 topologies. Here, we present a small water-soluble light-up fluorescent probe that features a minimalistic amidinocoumarin-based molecular scaffold that selectively targets parallel G4 structures over antiparallel and non-G4 structures. We showed that this biocompatible ligand is able to selectively stabilize the G4 template resulting in slower DNA synthesis. By tracking individual DNA molecules, we demonstrated that the G4-stabilizing ligand perturbs DNA replication in cancer cells, resulting in decreased cell viability. Moreover, the fast-cellular entry of the probe enabled detection of nucleolar G4 structures in living cells. Finally, insights gained from the structure-activity relationships of the probe suggest the basis for the recognition of parallel G4s, opening up new avenues for the design of new biocompatible G4-specific small molecules for G4-driven theranostic applications.


Assuntos
Amidinas/química , Cumarínicos/química , DNA/análise , Corantes Fluorescentes/química , Quadruplex G , Amidinas/síntese química , Amidinas/metabolismo , Sobrevivência Celular/efeitos dos fármacos , Cumarínicos/síntese química , Cumarínicos/metabolismo , DNA/genética , DNA/metabolismo , Replicação do DNA/efeitos dos fármacos , Desenho de Fármacos , Corantes Fluorescentes/síntese química , Corantes Fluorescentes/metabolismo , Células HeLa , Humanos , Limite de Detecção , Microscopia Confocal , Microscopia de Fluorescência , Estrutura Molecular , Relação Estrutura-Atividade
19.
Eur J Med Chem ; 222: 113625, 2021 Oct 15.
Artigo em Inglês | MEDLINE | ID: mdl-34146914

RESUMO

Dicationic diamidines have been well established as potent antiparasitic agents with proven activity against tropical diseases like trypanosomiasis and malaria. This work presents the synthesis of new mono and diflexible triaryl amidines (6a-c, 13a,b and 17), their aza analogues (23 and 27) and respective methoxyamidine prodrugs (5, 7, 12a,b, 22 and 26). All diamidines were assessed in vitro against Trypanosoma brucei rhodesiense (T. b. r.) and Plasmodium falciparum (P. f.) where they displayed potent to moderate activities at the nanomolar level with IC50s = 11-378 nM for T. b. r. and 4-323 nM against P. f.. In vivo efficacy testing against T. b. r. STIB900 has shown the monoflexible diamidine 6c as the most potent derivative in this study eliciting 4/4 cures of infected mice for a treatment period of >60 days upon a 4 × 5 mg/kg dose i. p. treatment. Moreover, thermal melting analysis measurement ΔTm for this series of diamidines/poly (dA-dT) complexes fell between 0.5 and 19 °C with 6c showing the highest binding to the DNA minor groove. Finally, a 50 ns molecular dynamics study of an AT-rich DNA dodecamer with compound 6c revealed a strong binding complex supported by vdW and electrostatic interactions.


Assuntos
Amidinas/farmacologia , Antiparasitários/farmacologia , Compostos Aza/farmacologia , Plasmodium falciparum/efeitos dos fármacos , Pró-Fármacos/farmacologia , Trypanosoma brucei rhodesiense/efeitos dos fármacos , Amidinas/síntese química , Amidinas/química , Antiparasitários/síntese química , Antiparasitários/química , Compostos Aza/síntese química , Compostos Aza/química , Relação Dose-Resposta a Droga , Modelos Moleculares , Estrutura Molecular , Testes de Sensibilidade Parasitária , Pró-Fármacos/síntese química , Pró-Fármacos/química , Relação Estrutura-Atividade , Trypanosoma brucei rhodesiense/enzimologia
20.
Org Lett ; 23(7): 2643-2647, 2021 04 02.
Artigo em Inglês | MEDLINE | ID: mdl-33749284

RESUMO

A method for the enantio- and chemoselective iridium-catalyzed O-allylation of oximes is described. Kinetic resolution in an intramolecular setting provides enantioenriched oxime ethers and aliphatic allylic alcohols. The synthetic potential of the products generated with this method is showcased by their elaboration into a series of heterocyclic compounds and the formal synthesis of glycoprotein GP IIb-IIIa receptor antagonist (-)-roxifiban. Preliminary mechanistic experiments and computational data shed light on the remarkable chemoselectivity of the reaction.


Assuntos
Amidinas/química , Irídio/química , Isoxazóis/química , Oximas/química , Propanóis/química , Catálise , Estrutura Molecular , Estereoisomerismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...